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Summary

1. The use of data documenting how species’ distributions have changed over time is crucial for testing how well

correlative species distribution models (SDMs) predict species’ range changes. So far, however, little attention

has been given to developing a reliablemethodological framework for using such data.

2. Wedevelop a new tool – the temporal validation (TV) plot – specifically aimed atmaking use of species’ distri-

bution records at two times for a comprehensive assessment of the prediction accuracy of SDMs over time.

3. We extend existing presence–absence calibration plots tomake use of distribution records from two time peri-

ods. TV plots visualize the agreement between change in modelled probabilities of presence and the probability

of observing sites gained or lost between time periods. We then present three measures of prediction accuracy

that can be easily calculated fromTV plots.

4. Wepresent ourmethodological framework using a virtual species in a simplified landscape and then provide a

real-world case study using distribution records for two species of breeding birds from two time periods of inten-

sive recording effort acrossGreat Britain.

5. Together with existing approaches, TV plots and their associated measures offer a simple tool for testing how

well SDMs model species’ observed range changes – perhaps the best way available to assess their ability to

predict likely future changes.

Key-words: species distribution models, temporal validation, prediction accuracy, range change,

calibration plots, historic surveys

Introduction

Correlative species distribution models (SDMs) are increas-

ingly used to project likely future changes in species’ distribu-

tions under ongoing global environmental change (Elith &

Leathwick 2009). As a result, assessing how well these

approaches can predict species’ geographic range changes over

time is of increasing importance.

Repeated surveys that document species’ distributions at

multiple time periods represent invaluable opportunities for

testing SDM predictions over time (Ara�ujo et al. 2005a,b;

Kharouba, Algar & Kerr 2009; Tingley et al. 2009; Rubidge

et al. 2010; Dobrowski et al. 2011; Rapacciuolo et al. 2012;

Smith et al. 2013). A growing number of temporal data sets

are emerging from efforts to rescue and digitize natural history

museum collections and other historical data sources such as

field notes and photographs (Tingley & Beissinger 2009; Pyke

& Ehrlich 2010; Drew 2011). So far, however, little attention

has been given to how these data should best be used for testing

the prediction accuracy of SDMs over time. In this paper, we

develop a new type of diagnostic plot, the temporal validation

(TV) plot and an associated set of measures, which make use

of distribution data at two time periods within a given area to

evaluate how well SDMs can predict species’ range changes

over time.

Although tests of SDMpredictions through time are still rel-

atively rare, existing studies have primarily tested how well

models built using species distribution data from a first time

period (i.e. calibration data) discriminate between the species’

observed presences and absences in a second time period (i.e.

validation data) using common measures based on a single

probability threshold (e.g. Cohen’s Kappa, sensitivity, specific-

ity; Ara�ujo et al. 2005a; Rapacciuolo et al. 2012; Smith et al.

2013) or a range of possible thresholds (e.g., AUC; Kharouba,

Algar & Kerr 2009; Rubidge et al. 2010; Dobrowski et al.*Correspondence author. E-mail: giorapac@gmail.com
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2011; Smith et al. 2013). Such tests of SDM predictions

through time are generally used to estimate how well models

are likely to predict species’ range changes in the future

(Ara�ujo et al. 2005a,b; Kharouba, Algar &Kerr 2009; Tingley

et al. 2009; Rubidge et al. 2010; Dobrowski et al. 2011;

Rapacciuolo et al. 2012; Smith et al. 2013). In this context,

however, this widely used approach to temporal validation

suffers from twomain issues.

The first issue is that converting continuous probabilities of

presence to binary presence–absence predictions using a single

or multiple thresholds may not alone provide an exhaustive

estimate of model prediction accuracy over time. The practice

ignores much information generated by the models: all pre-

dicted probabilities above the chosen threshold are considered

equal, as are all those below, however, near or far they are from

it. As a result, slight but important changes in the environment

may not be captured by binary-converted predictions and pre-

diction accuracy measures based on these converted model

predictions may wrongly infer range stability despite the prob-

ability of presence being predicted to change.

The second issue is that using calibration and validation

data sets collected in different time periods across the same

region does not enable fully independent model validation.

This is because many modelled factors that correlate with a

species’ distribution across that region will remain unchanged

through the entire study period. As a result, models with high

explanatory power in one time period are likely to retain that

power in another time period across areas where both observa-

tions and model predictions indicate no change in the species’

range, regardless of whether the models have captured funda-

mental drivers of range change over time (Ara�ujo et al. 2005a;

Rapacciuolo et al. 2012). Importantly, spurious species-envi-

ronment correlations identified during model calibration may

not be revealed by temporal validation across these unchanged

areas. Therefore, measuring prediction accuracy over the entire

study area in a second time period – including unchanged areas –

may be a misleading measure of how well models are likely to

predict to a third time period (e.g. future environmental sce-

nario). This approach should be complemented with measures

that focus on how well models predict to areas where species’

range changes have actually been observed and/or predicted

(Rapacciuolo et al. 2012). The issue of examining spatial pro-

cesses of change with global measures that do not incorporate

spatial variation in prediction accuracy within the study region

(e.g. Kappa) has been the subject of much scrutiny in the

remote-sensing and map comparison literatures (Csillag &

Boots 2005; Pontius & Millones 2011; Robertson et al. 2014),

yet it has been rarely considered in the SDM literature.

TV plots aim to overcome both issues with existing

approaches. First, we extend the method of presence-absence

calibration plots – originally developed in the context of statis-

tical medicine (Miller, Hui & Tierney 1991; Harrell, Lee &

Mark 1996; Harrell 2001) but repeatedly used to quantify the

calibration of SDMs (Pearce & Ferrier 2000; Boyce et al. 2002;

Hirzel et al. 2006; Phillips & Elith 2010) – for use with empiri-

cal distribution and environmental data from two time peri-

ods. The presence–absence calibration plots fit observed

presence–absence directly as a function of continuous mod-

elled probabilities, without converting to binary predictions

based on any threshold (Phillips & Elith 2010). Thus, our

method makes full use of the information generated by the

modelling process without ignoring the probabilistic nature of

SDMpredictions. Second, we focus on assessingmodel perfor-

mance only on grid cells where either or both observed data

and model predictions indicate range change over time, while

disregarding model performance on grid cells where both

observations and predictions indicate no range change. TV

plots model how well changes in modelled probability of pres-

ence between time periods reflect species’ observed gains and

losses separately, thus incorporating spatial variation in pre-

diction accuracy within the study area. Building on the existing

literature, we then present three measures of the agreement

between modelled and observed changes that can be easily cal-

culated from TV plots – AccTV, CorTV and BiasTV. Together

with existing approaches to temporal validation, these mea-

sures provide a comprehensive assessment of howwell a model

predicts observed range changes and, thus, the fullest available

picture of how likely themodel is to predict future changes.We

present our methodological framework using a virtual species

in a simplified landscape, then provide a real-world case study

using distribution records for two breeding bird species from

two time periods of intensive recording effort across Great

Britain (Sharrock 1976; Gibbons,Reid&Chapman 1993).

Virtual case study

SIMULATED ENVIRONMENT

We consider an artificial landscape of 30 9 30 grid cells and

generate environmental variation within this grid in an initial

time period t using three ‘climate’ variables – temperature,

precipitation and covar – each taking values in the range 0–1.

Temperature and covar both exhibit a linear latitudinal gradi-

ent and are highly intercorrelated (Pearson’s r = 0�88), while
precipitation exhibits a linear longitudinal gradient (Fig. 1).

We then simulate change in the environment in a second time

period t + 1by updating the values of the three environmental

variables across the landscape. We specify alternative change

scenarios for each variable –mean temperature increase, mean

precipitation decrease and no change in mean covar – by

sampling change values from three different normal distribu-

tions (temperature: mean � standard deviation = 0�3 � 0�25;
precipitation: �0�15 � 0�5; covar: 0 � 0�5) and summing

sampled values with initial environmental values (Fig. S1).

ENVIRONMENTAL FUNCTIONAL RELATIONSHIPS

We simulate the distribution of a simple virtual species across

this landscape by specifying four alternative functional rela-

tionships between the species’ probability of presence and the

environment – a true functional relationship and three poten-

tial misspecifications of the truth (Fig. 1). This approach,

based on simulations by Phillips & Elith (2010) and Pagel &

Schurr (2012), enables us to quantify the effects of alternative
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model misspecifications on how well models predict the

species’ true distribution over time. First, we specify the true

probability of presence for our virtual species conditional on

temperature and precipitation only, but not covar, as:

0�5 9 temperature + 0�5 9 precipitation. Thus, the variable

covar does not bear any functional relationship with the spe-

cies’ true probability of presence, although it significantly cov-

aries with the species’ presence–absence because of its strong

correlation with temperature.We then consider three potential

models of our virtual species’ probability of presence, which

we parameterize statistically based on subsets of the three envi-

ronmental variables (see Fig. 1).

(1) The Incomplete model estimates probability of presence

conditional only on temperature, ignoring precipitation as fol-

lows: 0�26 + 0�51 9 temperature. This model may arise if rel-

evant predictors – in this case precipitation –were unavailable,

overlooked or wrongly excluded duringmodel selection.

(2) The Collinear model estimates the species’ probability of

presence conditional on precipitation and covar, ignoring tem-

perature, as: 0�03 + 0�5 9 precipitation + 0�5 9 covar.

This model may arise if irrelevant predictors are naively

entered into a model selection algorithm and erroneously

selected through their apparent correlation with probability of

presence.

(3) The Incomplete and Collinear model estimates the proba-

bility of presence conditional only on covar, ignoring the true

predictors temperature and precipitation, as: 0�28 + 0�52 9

covar. This model combines both types of misspecification

included in the previous two models: it is incomplete, as it only

considers a single variable instead of two, and collinear, as it
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Fig. 1. Four alternative environmental func-

tional responses of a virtual species to three

simulated variables over a simplified land-

scape of 30 x 30 grid cells. Left panels show

simulated values for (a) temperature, (c) pre-

cipitation, (e) covar across the simplified land-

scape; hotter colours indicate higher values

(see figure legend). Right panels show how

probability of presence varies with (b) temper-

ature, (d) precipitation, (f) covar (while keep-

ing all other variables constant at 0) according

to each functional response – the Truth (thick

black), the Incomplete model (orange), the

Collinear model (blue), and the Incomplete

andCollinearmodel (green).
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includes a variable correlated but not functionally related to

the species’ true probability of presence.

We predict the probability of presence of our virtual species

across the landscape in period t and t + 1 based on each of

the four environmental functional relationships. To define the

true presence–absence of the species across the landscape in

both time periods, we convert each grid square’s probability of

presence to either presence or absence by conducting a Ber-

noulli trial according to the species’ true probability of pres-

ence in each grid square.

TEMPORAL VALIDATION PLOTS

We extend the approach of presence–absence calibration plots

(reviewed by Pearce & Ferrier 2000; Boyce et al. 2002; Hirzel

et al. 2006; Phillips & Elith 2010 in the context of SDMs) to

make use of data from two time periods and develop a new

plot, the temporal validation (TV) plot, for assessing the predic-

tion accuracy of SDMs over time. TV plots show the agree-

ment between changes in observed presence–absence and

changes in modelled probability of presence between t and

t + 1. This is performed in three steps: (i) calculating observed

and modelled changes, (ii) estimating gain and loss functions

and (iii) combining gain and loss functions to visualize the

agreement between observed andmodelled changes.

Step 1: Calculating observed andmodelled changes

First, the species’ presence–absence (y) across the study area is

compared between t and t + 1 to identify observed gains

(instances where yt = 0 and yt + 1 = 1), losses (yt = 1 and

yt + 1 = 0), stable presences (yt = 1 and yt + 1 = 1), and sta-

ble absences (yt = 0 and yt + 1 = 0). Figure 2a shows

observed changes in the presence–absence of our virtual species

between t and t + 1. Overall, the species’ presence across the

landscape has increased: the species has experiencedmost gains

in areas that have become warm enough for the species to

expand into and have also remained wet enough for it to occur

despite overall decrease in precipitation (i.e. north-west of the

landscape). Additionally, there have been localized gains and

losses across the entire landscape.

Second, values of change in modelled probability of pres-

ence (Dm) are calculated by subtracting modelled probability

of presence in t (mt) from modelled probability of presence in

t + 1 (mt + 1). Importantly, Dm values are not linearly

related to the probability that gains or losses are actually

observed, even if we assume that a model has captured per-

fectly a species’ environmental functional relationship. For

example, consider two absence sites with different mt: for an

equal increase in modelled probability of presence in t + 1

(Dm > 0), the site with a higher mt will exhibit an inherently

higher probability of gain because it already presents a higher

probability of finding the species. Similarly, for equal decreases

in modelled probability of presence (Dm < 0), a presence site

with a higher initial probability of absence (1 � mt) has an

inherently higher probability of loss. Therefore, weighted,

instead of absolute, changes in modelled probability of pres-

ence (Dmweighted) are used in TV plots. Dmweighted are calculated

byweightingDm values bymt, using the following function:

Dmweighted ¼ fðDm;mtÞ ¼
Dm
1�mt

; if Dm[ 0
0; if Dm ¼ 0
Dm
mt

; if Dm\0

8<
: eqn 1

Figure 2b shows the species’ weighted changes in modelled

probability of presence between t and t + 1 according to the

true functional relationship. Most increases are predicted in

the west and most decreases are predicted in the northeast of

the simulated landscape.

Step 2: Estimating gain and loss functions

Two separate functions – a gain and a loss function – are fitted

to subsets of the values calculated in step 1. Gain and loss func-

tions (blue and red curves of Fig. 2c, respectively) indicate the

probability that gains and losses, respectively, are observed for

any given value of Dmweighted by interpolating from observed

instances. Each of these two functions is generated in amanner

analogous to the presence–absence calibration plots of Phillips

and Elith (2010): binary 1-0 observations are statistically mod-

elled as a function of continuous modelled probabilities using

natural splines (Ridgeway 2013). For the gain function, the

binary response is calculated by contrasting observed gains (1;

the blue tickmarks in the top rug plot of Fig. 2c) with observed

losses and stable absences (0; the grey tick marks in the top rug

plot of Fig. 2c). Notably, stable presences are excluded from

the estimation of gain functions as they are uninformative of

how well a model predicts change: although Dmweighted may

well increase at these sites, a species cannot gain sites it already

occupies. Similarly, for the loss function, the binary response is

calculated by contrasting observed losses (1; the red tick marks

in the bottom rug plot of Fig. 2c) with gains and stable pres-

ences (0; the grey tick marks in the bottom rug plot of Fig. 2c).

Fig. 2. Quantifying the agreement between observed distribution changes and weighted changes in modelled probabilities of presence (Dmweighted)

between time periods t and t + 1 for the four functional responses of our virtual species using TVplots. (a) Observed distributional changes in simu-

lated space of our virtual species (gains, losses, stable presences and stable absences) between time periods. (b)Dmweighted values across the landscape

according to the true functional response of our virtual species. Bluer and redder colours indicate increases and decreases in probability of presence,

respectively. (c) TV plot for the true functional response of our virtual species. Shown are the model temporal validation curve (thick black) – the

sum of the plotted gain function (blue curve) and loss function (red curve) – and confidence intervals of � 2 standard errors of the mean (orange).

The dashed black line represents the expectation for an ideal temporal validation curve. The rug plots showmodel values at observed gain sites (blue,

top of the plot), loss sites (red, bottom of the plot) and stable absences/losses (grey, top of the plot) and stable presences/gains (grey, bottom of the

plot). (d–f) TV plots (top panel) andDmweighted (bottom panel) for (d) the Incomplete model, (e) the Collinear model and (f) the Incomplete and Col-

linearmodel.
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Stable absences are not used in the estimation of loss functions

as a species cannot lose sites from which it is already absent.

For both functions, responses are modelled as a function of

values of Dmweighted at each site corresponding to a response

value. To aid visualization, the loss function ismultiplied by�1

before being plotted in TV plots, so that it appears in the

–1·0 –0·5 0·0 0·5 1·0

–1
·0

–0
·5

0·
0

0·
5

1·
0

–1·0 0·50·0–0·5 1·0

P
ro

ba
bi

lit
y 

of
 o

bs
er

vi
ng

 c
ha

ng
e

Δmweighted 

(c)

(a)

(b)

.

.

.

.

.(d) (e)

Δmweighted 

–1·0 1·00·0

P
ro

ba
bi

lit
y 

of
 o

bs
er

vi
ng

 c
ha

ng
e

–1
·0

1·
0

0·
0

–1·0 1·00·0

–1
·0

1·
0

0·
0

–1·0 1·00·0

–1
·0

1·
0

0·
0

(f)

Gain

Loss

Stable presences

Stable absences

P
ro

ba
bi

lit
y 

of
 o

bs
er

vi
ng

 c
ha

ng
e

P
ro

ba
bi

lit
y 

of
 o

bs
er

vi
ng

 c
ha

ng
e

Δmweighted Δmweighted 

y

x

y

y

x

y

x

y

x

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 5, 407–420

Temporal validation plots 411



negative range of the y-axis and can be better contrasted to the

gain function (Fig. 2c).

Step 3: Combining gain and loss functions to visualize the

agreement between observed andmodelled changes

A model that perfectly predicts range change through time

should predict a probability of gain of 1 and a probability of

loss of 0 in areas where there are no losses and all possible gains

are made. Similarly, it should predict a probability of gain of 0

and a probability of loss of 1 where no gains are made and

every presence is lost. To verify these expectations, gain and

loss functions are combined into a temporal validation curve

that quantifies how well a model predicts the probability of

observing a given overall change in presence–absence between

t and t + 1. For any given Dmweighted, the temporal validation

curve (thick black curve of Fig. 2c) equals the gain function

minus the loss function.Note that, because probabilities of loss

are plotted with a negative sign in TV plots, the model tempo-

ral validation curve is actually the sum, not the difference, of

plotted gain and loss functions. Using this approach, an ideal

model results in an ideal straight line going from (�1, �1) –

where every presence is lost and there are no gains – to (1, 1) –

where every empty cell is filled and no cell is lost (dashed line of

Fig. 2c). The ideal line also passes through the origin (0, 0) –

where probability of observing gains and probability of

observing losses are equal. It should be noted that, even for an

ideal model, the probabilities of observing gains and losses at

(0, 0) are not necessarily zero: some grid cells may be gained or

lost due to stochastic population processes, even after account-

ing for all deterministic environmental processes.

We generate TV plots of the true functional response

(Fig. 2c) and the three models (Fig. 2d–f); these visualize the

ability of each alternative functional response to model change

in the observed distribution of our virtual species between t

and t + 1. The modelled temporal validation curve can be

visually compared with the ideal expectation using � 2 stan-

dard error confidence intervals (orange lines of Fig. 2c). Pre-

dictions from the true functional response show near-perfect

agreement with observed changes in presence–absence: the

ideal curve almost entirely falls within the � 2 standard error

confidence intervals of the model curve and the model curve

approaches both (�1, �1) and (1, 1) (Fig. 2c). On the other

hand, TV plots of all three alternative models of the species’

distribution indicate some level of misprediction (Fig. 2d–f).

In particular, the Incomplete and Collinear model appears to

lack any understanding of the species’ drivers of range change:

gains and losses are observed with comparable frequencies

across the entire range ofDmweighted (Fig. 2f).

PREDICTION ACCURACY MEASURES FROM TV PLOTS

Visual inspection of TV plots is useful and may be all that is

needed for a number of applications, but often repeatable

and quantitative measures of predictive accuracy through

time are required. This is especially true in studies where

many models are used for comparative purposes and visual

inspection is impractical (e.g. Ara�ujo et al. 2005a; Khar-

ouba, Algar & Kerr 2009; Dobrowski et al. 2011; Rapacciu-

olo et al. 2012; Smith et al. 2013). How can a model’s

prediction accuracy be calculated from TV plots? In the con-

text of SDMs, a number of measures have been generated

from presence–absence calibration plots; however, few of

them offer a comprehensive assessment, as they generally

either assume linear model curves (e.g. calibration bias and

spread; Pearce & Ferrier 2000) or focus on a single aspect of

model calibration whilst ignoring others (e.g. point biserial

correlation; Phillips & Elith 2010). Here, we build on the

work of Harrell (2001), Pearce & Ferrier (2000) and Phillips

& Elith (2010), but also the work of Boyce et al. (2002) and

Hirzel et al. (2006), to develop three simple measures of the

agreement between the model and the ideal temporal valida-

tion curves – AccTV, CorTV, and BiasTV. Together, these

measures offer a comprehensive assessment of how well a

model predicts range change through time. Figure 3 pro-

vides visual representations of the three measures, exempli-

fied using the TV plot of the Collinear model of our virtual

species.

The first measure, temporal validation accuracy (AccTV;

Fig. 3a), is a measure of the weighted mean distance between

the ideal and model temporal validation curves at each obser-

vation, subtracted from 1. AccTV can be calculated using the

following equation:

AccTV ¼ 1�
Pn

q¼1 Dmweighted;qjymodel;q � yideal;qjPn
q¼1 Dmweighted;q

eqn 2

where ymodel and yideal are the y values of the model curve and

ideal curve, respectively, at each observed site q, and Dmweighted

are the weighted changes in modelled probability of presence

at each site q. We use a weighted mean to give more impor-

tance to large changes in modelled probability of presence and

less importance to minor changes, so as to provide a more

rigorous measure of agreement when substantial changes are

predicted. AccTV ranges from a minimum value of 0 – indicat-

ing amodel whose predictions are on average as distant as pos-

sible from probabilities of observing change – to a maximum

value of 1 – indicating a perfectly predictive model whose

weighted changes in modelled probability of presence can be

taken at face value.

The second measure, temporal validation correlation

(CorTV; Fig. 3b), is the weighted Pearson’s r correlation coeffi-

cient between ymodel and yideal at each observed site q, whereby

the weights equal Dmweighted, q. CorTV can be calculated using

the following equation:

CorTV

¼ covðymodel;Yideal;Dmweighted;qÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
covðymodel;ymodel;Dmweighted;qÞcovðyideal;yideal;Dmweighted;qÞ

p
eqn 3

where cov is the covariance. Our CorTV measure is similar to

the point biserial correlation (COR; Elith et al. 2006; Phillips

& Elith 2010) except that it correlates predicted probabilities

with continuous probability values fitted using natural splines,

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 5, 407–420
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instead of observed binary values; for this reason, CorTV values

are expected to be considerably higher than corresponding

COR values.

The third measure, temporal validation bias (BiasTV;

Fig. 3c), quantifies the systematic deviation between the ideal

and the model curves. Unlike AccTV and CorTV, BiasTV is not

simply calculated at each observed site. Instead, it is estimated

over the entire interval between minimum and maximum

Dmweighted values – respectively min(Dmweighted) and max

(Dmweighted) – using definite integrals evaluating the area

between the ideal and model functions and the x-axis. BiasTV
can be calculated as follows:

BiasTV ¼
ZmaxðDmweightedÞ

minðDmweightedÞ

idealðxÞdx�
ZmaxðDmweightedÞ

minðDmweightedÞ

modelðxÞdx

eqn 4

A model has a BiasTV of 0 if it perfectly predicts overall

change in the probability of observing a species across the

entire range of Dmweighted. A negative BiasTV indicates the

model tends to underestimate species’ overall presence across

the landscape in t + 1 by underestimating observed gains

and/or overestimating observed losses. A positive BiasTV indi-

cates the model tends to overestimate the species’ overall pres-

ence in t + 1 by overestimating observed gains and/or

underestimating observed losses. Importantly, a model may

have a BiasTV of 0 despite substantial deviations from the ideal

curve at given Dmweighted values. This may occur if overesti-

mates and underestimates of gains are balanced by equal over-

estimates and underestimates of losses, respectively, and

overall change in modelled probability averages out to overall

probability of observing change in the species’ presence.

Table 1 shows how the three measures derived from TV

plots vary across the four environmental functional responses

of our virtual species. Unsurprisingly, the true environmental

functional response has the highest AccTV and CorTV – both

close to 1 – and the lowest BiasTV – nearly 0. Among the three

models, the Incomplete model appears to be the best, with a

similar CorTV to the Truth but a lower AccTV and a large nega-

tive BiasTV, while the Incomplete and Collinearmodel is clearly

the least able to predict observed change, with a very low

AccTV and negative CorTV and BiasTV values. The Collinear

model has intermediate prediction accuracy, with a CorTV
comparable to the Truth but a lower AccTV than the Incom-

pletemodel.

WHAT ASPECTS OF SPECIES AND THEIR ENVIRONMENT

AFFECT MEASURES FROM TV PLOTS?

The calculation of many commonly used measures of SDM

prediction accuracy is affected by the prevalence (i.e. propor-

tion of observed presences) of the modelled species within the

study area (McPherson, Jetz & Rogers 2004; Santika 2011;

Lawson et al. 2014). In addition, there are indications that the

magnitude and extent of environmental change may also affect

the assessment of SDM prediction accuracy over time (Fitzpa-

trick & Hargrove 2009; Elith, Kearney & Phillips 2010). For
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Fig. 3. Visualizations of the three measures of prediction accuracy

from TV plots (AccTV, CorTV and BiasTV), exemplified using the TV

plot for the Collinear model. (a) AccTV equals 1 minus the mean abso-

lute distance between the models’ and the ideal y values (black lines),

weighted by the corresponding x values, at each observed site (tick

marks). (b) CorTV is the Pearson’s r coefficient between themodels’ and

the ideal y values, weighted by the corresponding x values, at each

observed site (tick marks). (c) BiasTV is the difference between the area

under the ideal curve (dashed black) and the area under the model

curve (thick black); it is equivalent to the dark grey minus the light grey

area. Note that observed sites shown in scatter and rug plots have been

subsampled from our simulated space to aid visualization.

Table 1. Prediction accuracy measures derived from temporal valida-

tion plots of the four environmental functional responses of our virtual

species.

Prediction accuracymeasures AccTV CorTV BiasTV

Truth 0�930 0�996 �0�004
Incomplete 0�789 0�976 0�213
Collinear 0�603 0�993 �0�424
Incomplete andCollinear 0�424 �0�187 �0�271
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these reasons, we carried out a sensitivity analysis to test

whether temporal prediction accuracymeasures fromTV plots

are sensitive to various aspects of our virtual species and sim-

plified landscape. We investigated the effect of varying three

main factors: species’ initial prevalence (i.e. number of pres-

ences over total number of grid cells), magnitude of environ-

mental change and spatial extent over which environmental

change takes place. For the purposes of this sensitivity analysis,

we used the same four functional responses and initial environ-

mental values we used in our main virtual case study (see

Fig. 1). However, we simplified our environmental change sce-

nario by sampling values of change from a normal distribution

with a mean of 0 and a standard deviation of 0�4 for all three

variables, unless otherwise specified. First, given the linear

relationship between our species’ probability of presence and

both temperature and precipitation, we varied the species’ ini-

tial prevalence across the landscape by progressively increasing

initial values of temperature and precipitation, with initial

covar values varying accordingly (25 alternative scenarios).

Second, we varied the magnitude of environmental change

between time periods by progressively increasing the standard

deviation – from 0�01 to 1 – of the normal distribution from

which we sampled values of environmental change, concur-

rently for all three variables (25 alternative scenarios). Finally,

we varied the spatial extent over which environmental change

occurred by varying the extent of the grid over which we sam-
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pled environmental change – from a 1 9 1 grid to the entire

30 9 30 grid (30 alternative scenarios). We ran 100 repeats

of each alternative scenario for each factor and present mean

values of prediction accuracy measures across those 100

repeats.

Figure 4 shows the effect of varying species’ initial preva-

lence, magnitude and spatial extent of environmental change

on temporal validation for the four alternative functional

responses of our virtual species. Overall, the three prediction

accuracymeasures derived fromTVplots were not particularly

sensitive to any of the three factors: the four alternative func-

tional responses generally maintained their relative rank and

values of each measure remained relatively stable across most

alternative environmental scenarios of each factor. However,
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Fig. 5. Temporal validation of a climate-based species distribution model of the Pied Wagtail across Great Britain between t and t + 1. (a)

Observed changes in the distribution of the PiedWagtail between time periods. (b)Weighted changes inmodelled probability of presence (Dmweighted)

from a climate-based SDM. Bluer and redder colours indicate increases and decreases in probability of presence, respectively. (c) TV plot of the cli-

mate-based SDM. Shown are themodel temporal validation curve (thick black) – the sum of the plotted gain function (blue curve) and loss function

(red curve) – and confidence intervals of � 2 standard errors of themean (orange). The dashed black line represents the expectation for an ideal tem-

poral validation curve. The rug plots show model values at observed gain sites (blue, top of the plot), loss sites (red, bottom of the plot), stable

absences/losses (grey, top of the plot) and stable presences/gains (grey, bottom of the plot).
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there were two main noteworthy results. First, all models

had higher AccTV than expected compared with the truth at

particularly low magnitudes and extents of environmental

change (Fig. 4a, second and third columns), suggesting that

the reliability of certain measures from TV plots may increase

with the amount of environmental change experienced across

the study area. Considering alternative measures such as

CorTV and BiasTV, which were less sensitive to the magnitude

and extent of environmental change, appears to be particularly

important for a more consistent picture of temporal validation

at low magnitudes and extents of change. Second, all three

measures were somewhat sensitive to our virtual species’ initial

prevalence: at low and high extremes of initial prevalence,

BiasTV values were positive and negative, respectively, and

AccTV and CorTV values were slightly lower than expected

(Fig. 4a–c, first column). We suspect these results may be par-

tially explained by the lack of ecological realism in our simula-

tions. In fact, identifying cells as observed gains or losses from

given increases or decreases in probability of presence within a

Bernoulli trial is less likelywhen initial probabilities of presence

are either extremely low (i.e. low prevalence) or extremely high

(i.e. high prevalence), respectively. As a result, mismatches

between observed and modelled changes in our virtual case

study are more likely at extremes of prevalence. Nevertheless,

it should be noted that the species’ initial prevalence, through

its effects on the relative probability of observing gains or

losses, may have an effect on measures of prediction accuracy

fromTV plots when using real data.

Real-data case study

We tested the method of TV plots using observed distribution

records for two species of breeding birds – the Pied Wagtail

and the Turtle Dove – across Great Britain in two time periods

between the 1960s and the 1990s. For those two species, we

asked: (i) Does model fit in one time period indicate prediction

accuracy over time? (ii) Can measures from TV plots – which

focus on instances of range change – identify aspects of predic-

tion accuracy over time not apparent from commonly used

range-widemeasures?

SPECIES DISTRIBUTION DATA

We used distribution records for the Pied Wagtail (Motacilla

alba) and the Turtle Dove (Streptopelia turtur) in 2603 British

10-km grid squares at two time periods (t: 1968–1972; t + 1:

1988–1991), corresponding to the periods of intensive record-

ing effort leading to the publication of two national atlases of

breeding birds (Sharrock 1976; Gibbons, Reid & Chapman

1993). Although the absence of these species from each 10-km

grid square could not be definitively recorded during sampling,

most grid squares in Great Britain were meticulously sampled,

with high levels of duplicate recording and under-recorded

areas being targeted by extra recording schemes (Sharrock

1976; Gibbons, Reid & Chapman 1993). Thus, we assumed

that each surveyed grid square in which a species was not

recorded (i.e. nondetection) represented a true absence.

CLIMATE PREDICTORS

We used six climate variables: mean temperature of the coldest

month (°C), mean temperature of the warmest month (°C),
ratio of actual to potential evapotranspiration (standard mois-

ture index), potential sunshine (hours), total annual precipita-

tion (mm) and the difference between total winter precipitation

and total summer precipitation (mm). These were calculated

from monthly values of temperature, precipitation and cloud

cover for periods t and t + 1 from the Climate Research Unit

ts2.1 (Mitchell & Jones 2005) and the Climate Research Unit

61–90 (New, Hulme & Jones 1999) and did not show strong

multicollinearity (i.e. all pairwise Spearman’s q < 0�85).

SPECIES DISTRIBUTION MODELS

We modelled the presence–absence of the two bird species in

period t as a function of climate for the corresponding period

using generalized boosted models (GBMs; Ridgeway 1999);

we built these using the gbm package (Ridgeway 2013) in R

version 2.15.2 (R Core Team 2012), and code provided by

Elith, Leathwick and Hastie (2008). We used the species-cli-

mate associations identified in period t to generate modelled

estimates of probability of presence in t and t + 1, based on

observed climate for the corresponding periods.

MEASURES OF MODEL PERFORMANCE

We measured how well SDMs fitted species’ distributions in

the calibration period t using the area under the receiver oper-

ating characteristic (ROC) curve (AUC; Hanley & McNeil

1982) and the point biserial correlation (COR; Elith et al.

2006) – defined as the Pearson correlation between model val-

ues and binary values of observed presence-absence. We mea-

sured how well models predicted change between t and t + 1

using AccTV, CorTV, and BiasTV derived from TV plots. In

addition to these, we also quantified how well models discrimi-

nated between presences and absences across the entire study

area in t + 1 usingAUC andCOR.

Results

Climate-based SDMs provided an excellent fit to observed dis-

tribution records for both bird species in the calibration period

t (Pied Wagtail: AUC = 0�992, COR = 0�809; Turtle Dove:

AUC = 0�976, COR = 0�875). However, these two models

showed different patterns of prediction accuracy over time.

Discrimination across the species’ entire range in period t + 1

indicated a much higher prediction accuracy for the Turtle

Dove model (AUC = 0�924; COR = 0�670) than the Pied

Wagtail model (AUC = 0�691; COR = 0�335), suggesting that
climate models may accurately explain the distribution over

time of the Turtle Dove but not the Pied Wagtail. Further-

more, these results also indicate that model fit within one time

period may not necessarily indicate a model’s ability to predict

change over time. Nonetheless, generating TV plots revealed

additional aspects of these models and their predictions that
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could not be identified through focusing on the species’ entire

ranges.

The Pied Wagtail has expanded in areas of the Northern

coast and Islands of Scotland, as well as a few localized areas

of Eastern England in period t + 1 (Fig. 5a), with gains in

many of these areas being modelled accurately by our climate-

based SDM (Fig. 5b). As a result, the TV plot for this model

indicates a near-perfect prediction of the species’ gains (i.e. the

positive range of the x-axis), leading to a very high overall pre-

cision and correlation (Fig. 5c). This suggests that expansion

of the Pied Wagtail’s breeding range in these areas may be

linked to climate – particularly to an increase inminimum tem-

perature of the coldest month (data not presented). These find-

ings are consistent with previous studies indicating that higher

spring temperatures advance first egg dates in this species

(Mason & Lyczynski 1980; Crick & Sparks 1999), potentially

leading to higher clutch size and juvenile survival rates (Mason

&Lyczynski 1980). However, the PiedWagtail has also experi-

enced localized losses in areas of Northern Scotland and Cen-

tral and Western England (Fig. 5a). These losses do not

appear to be linked to climate – or at least the climatic variables

we considered – as they were not predicted by our climate-

based model, which instead predicted stable or even increasing

probability of presence in these areas (Fig. 5b). Losses in the

Pied Wagtail may be due to loss of suitable breeding habitat

(e.g. reed beds) – a driver which our climate-basedmodel could

not have captured.

Contrary to the Pied Wagtail, the Turtle Dove model

appears to completely lack any understanding of the factors

driving both gains and losses in the species (Fig. 6). Despite an

overall increase in climatic suitability (Fig. 6b), the Turtle

Dove has experiencedmany losses along the northern andwes-

tern edges of its range (Fig. 6a). This inconsistency between

predictions and observations is reflected in themodel’s TV plot

and measures, which indicate a substantial lack of agreement

between the ideal and themodel curve (Fig. 6c). Previous stud-

ies have indicated that range contraction of the Turtle Dove in

Great Britain may be a consequence of agricultural intensifica-

tion (Fuller et al. 1995) and changes in farming practice

(Browne et al. 2004) – drivers that are missing from our cli-

mate-basedmodel.

In summary, our real-data case study shows that model

fit in one time period does not necessarily indicate a mod-

el’s ability to predict change over time. Empirical data on

observed range changes can be used for a more reliable

estimate of a model’s prediction accuracy over time. TV

plots, which focus on instances of change over time,

revealed aspects of the relationship between species’ range

changes and climate that could not be identified through

rangewide measures. Therefore, a comprehensive assess-

ment of prediction accuracy over time should include both

measures of model fit across the species’ entire range and

measures that focus on instances where range changes have

been observed and/or predicted. Such an integrated

approach should provide a better assessment of how useful

models are likely to be in predicting to a third time period

(e.g. future scenario).

Discussion

We have developed a new tool that makes full use of species’

distribution records at two time periods over the same geo-

graphical area to quantify how well SDMs predict range

changes over time. Our TV plots and their associatedmeasures

overcome the limitations of current approaches by using all the

information generated by SDMs and focusing on predictive

accuracy across areas where range changes have actually been

observed and/or predicted over time. The approach we devel-

oped directly relates the redistribution of a species’ suitable

environment to the probability of observing it expanding or

retracting from a given area. As a result, high predictive accu-

racy from TV plots can only be achieved by models that accu-

rately capture drivers of change in species distributions.

Here, we have assumed that temporally replicated survey

data include perfect knowledge of both species’ presence and

absence across a study area; in reality, this assumption never

entirely holds andmay potentially affect the results of temporal

validation tests. In principle, TV plots could be extended to

alternative, more common types of temporal distribution data.

Often, temporal distribution datasets only hold information

on species’ presence. Incorporating these data in TV plots

could be done through an approach similar to that used by

Phillips and Elith (2010) for presence-only calibration plots:

background data (i.e. a random sample of sites in the study

area) could be used in place of species’ absences and a transfor-

mation employed to correct for the distortion in the model’s

gain and loss curves obtained this way. In some cases, includ-

ing our real-data case study, survey data hold more informa-

tion than just species’ presence: they include a list of surveyed

sites in which the species of interest was not detected (i.e. non-

detections). This additional information can be used to calcu-

late a probability of false absence (PFA) for each recorded

nondetection (Tingley &Beissinger 2009). Examples of statisti-

cal approaches for doing so are occupancy modelling (Mac-

Kenzie et al. 2002, 2011; Altwegg, Wheeler & Erni 2008), if

repeat samples are available at each site within each longer

time period, or list-based methods (Roberts, Donald & Green

2007; Szabo et al. 2010), if repeat samples are unavailable.

Estimates of PFA could be integrated in TV plots in a number

of ways. First, absences could be weighted by their certainty (1

– PFA) within the estimation of gain and loss functions in TV

plots. Second, hypothesized true absences could be identified

from a Bernoulli trial according to absence certainty. Third,

PFA estimates could be integrated directly within the response

of TV plots so that the new response is no longer binary (i.e.

gain vs. no-gain or loss vs. no-loss) but continuous, incorporat-

ing the probability of observing true gains/losses over time

given absence certainty. Extending TV plots for use with pres-

ence-only and presence-nondetection datawould enable taking

full advantage of unsystematic historical data sources – such as

natural history museum collections, field notes and photo-

graphs – for a more exhaustive and taxonomically broader

temporal validation of SDMs aimed at predicting likely future

changes.
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Although the three measures we developed in this paper rep-

resent an exhaustive summary of the principal information

contained in TV plots, many other measures could be derived

from these plots. The choice of predictive accuracy measure

should depend on the particular application for which SDMs

are being built. Additional measures that we can foresee being

useful are measures that contrast how well models predict

gains (i.e. the positive range of the x-axis) vs. losses (i.e. the

negative range of the x-axis). Indeed, species’ gains and losses

may not necessarily be driven by the same predictors andmod-

els may capture drivers of gain but not loss, or vice versa, as

shown by our Pied Wagtail example. The variety of prediction

accuracy measures that can be derived from TV plots should

enable users to assess model performance in a manner that is

better suited to their particular question. Nevertheless, differ-

ent measures derived from the same TV plot are likely to be
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correlated to some degree; assessing the level of dependence

among these will be a necessary step to prevent duplication of

information.

We suggest that TV plots are a useful tool for assessing how

well SDMs predict species’ range changes over time and thus

provide R source code and a simple tutorial for their use (see

Supporting Information). Our method complements current

rangewide approaches to quantify the prediction accuracy of

SDMs over time by focusing on instances where range changes

have been observed and/or predicted. Taken together, these

approaches should enable amuch fuller evaluation of howwell

SDMs predict species’ observed range changes, perhaps the

best way available to assess their ability to predict the future.

Data accessibility

The bird distribution data used in these analyses can be accessed
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1991 records: https://data.nbn.org.uk/Datasets/GA000147),

while the climate data can be accessed via the Climate Research

Unit (http://www.cru.uea.ac.uk/cru/data/hrg/).
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Figure S1. Scenario of environmental change for three variables across

a simplified landscape: (a) temperature change, (b) precipitation

change, and (c) covar change. Warmer colours represent bigger

increases whilst cooler colours represent bigger decreases (see figure leg-

end).

Data S1. Source code for running temporal validation plots inR.

Data S2.Tutorial for using temporal validation Plots inR.
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