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Supplementary Text 

Text S1. Uses of models in biodiversity assessments. 

We reviewed how correlative Species Distribution Models (SDMs) have been applied in 

biodiversity assessment by searching the Thomson Reuters’ Web of Science core 

collection on 18.05.2016 for peer-reviewed articles using SDMs in a biodiversity 

context. As search terms, we used a range of alternative names to describe correlative 

SDMs, combined with terms relating to biodiversity to filter out non-biodiversity 

applications (table S1.1). We restricted the results to articles published from 1995 to 

2015, written in English, and in journals from the ISI ecology and biodiversity 

conservation lists. Our search yielded 6,483 articles.  

 

We randomly sampled 400 papers to review (~6% of all papers retrieved). The vast 

majority of the papers in our sample modelled between one and five species (fig. S1.1), 

with terrestrial habitats in North America or Europe receiving most attention (fig. S1.2). 

We classified the papers according to the purpose for which the SDM was built 

(explanation, prediction or projection; table S1.2), and the intended conservation 

application of the SDM (table S1.3). Papers that developed or tested SDM methods 

were also marked as ‘Methods’, and we also noted any review papers. Papers that did 

not construct and apply SDMs were excluded from the classifications. To ensure that 

our sample was representative, we built accumulation curves showing the accumulated 

percentages of papers falling in each of the classes in table S1.2 and S1.3, as well as in 

different taxonomic groups, continents (fig. S1.4), and ecological realms, at increasing 

sample sizes, in increments of forty papers (fig. S1.3).  

Text S2. Guidelines for scoring models in biodiversity assessments. 

We developed four tables describing the guidelines to score SDMs for biodiversity 

assessment according to the standards set out in the main text. The tables relate to: 1) 

data used as a response variable (typically species occurrence data); 2) predictor 

variables (typically environmental data); 3) model building; and 4) model evaluation. 

For each of the four issues covered, we provide descriptions of the criteria used to score 

levels of quality according to our standards: aspirational (Gold); current best practice 



(Silver); current minimum acceptable practice (Bronze); and current unacceptable 

practice (Deficient). We supply these descriptions for three different possible purposes 

(explanation, prediction, projection) for a given study (table S1.2).  

 

We note two important caveats regarding these guidelines, especially for the purpose of 

Explanation and Projection. These caveats relate to the geographic extent of the study, 

and to differences between experimental vs. correlative approaches. First, we 

constructed these guidelines for studies that aim to characterize the drivers of 

distributions across the entire geographic or environmental range of the species. The 

guidelines may also prove relevant for studies within a smaller portion of a species’ 

geographic or environmental range. In these cases it is possible that some standards for 

‘explanation’ and ‘projection’ may be disregarded without compromising the quality of 

the SDMs. We note this in the table. Second, we fully acknowledge that firm 

conclusions regarding processes cannot be reached solely via correlative analyses of 

observational data. Rather, we note the ultimate need to consider jointly the results of 

both experimental and correlative approaches. We suggest caution in causally 

interpreting results from correlative analyses. 

Below, we provide a short explanatory text to accompany the tables S2.1–4. The 

guidelines in each cell of a table provide guiding principles rather than detailed 

methods. The explanatory text adds brief examples of specific implementations. In the 

accompanying text, we include citations from the scientific literature, both to document 

the specific recommendations and to point the user toward helpful references. We 

anticipate that the implementation methods will change rapidly over time. We also note 

that when final results arise from an ensembles modeling approach using multiple SDM 

techniques (see glossary and 3D for definition), then the standards can only be 

evaluated by assessing both the constituent SDMs and ensemble. 

Text S2.1. Guidelines for the response variable. 

Summary: The response variable is typically the place (and time) that a taxon is known 

to occur or not to occur, although abundance or other population-level information (e.g., 

growth rate) are also sometimes used. Such data should be representative of both the 

spatial and the environmental distributions of the taxon, so that models can capture 

relevant relationships with the environment and predict and project trends regarding the 



species spatial distributions. The description of the guidelines for evaluating the 

biological response data used in SDMs is synthesised in table S2.1 and discussed below. 

Text S2.1A. Sampling of response variables. 

Repeated systematic surveys with sufficient and well-designed sampling that is 

quantified and evenly distributed (geographically and/or environmentally) are gold 

standard. Non-systematic surveys (e.g., affected by subjective choices) and imperfect 

species detection can have significant negative impacts on model accuracy, especially if 

resulting biases are spatially and/or environmentally structured (85). In such cases, 

incorporating information on species detectability and survey effort can improve 

modelling results (86, 87) (see also 1.2.3, 3B). Lacking such information, other 

processing must be undertaken to reduce bias and better approximate geographically 

and environmentally representative samples (56, 88) (see also 1D and 1E).  

Text S2.1B. Identification of taxa. 

Realistic models require taxonomic identifications that are rigorous and well 

documented. False presences due to misidentification can affect models adversely (89). 

The gold standard requires that identifications be provided by experts using multiple 

lines of evidence and based on records that can be re-examined (e.g., voucher 

specimens, DNA sequences, sound recordings, photographs). When this is not feasible 

and/or data come from heterogeneous sources, uncertainty regarding identification 

should be acknowledged and dealt with (e.g., by re-examining dubious records and/or 

by identifying and removing implausible ones) (90) (see also 1C). 

Text S2.1C. Spatial accuracy of response variable. 

For the gold standard the spatial accuracy of the response variable should match or be 

finer than the spatial resolution of the predictor variables employed. To allow 

appropriate treatment of the response variable, data should be geo-referenced soundly 

with both precision and accuracy being reported (ideally with a GPS) (37, 91). If a 

species is surveyed on a grid of cells of a certain size, the environmental variables 

should ideally be measured at, or (dis)aggregated to, cells of the same size, or methods 

should be used for dealing with data that are spatially discordant (see 2B). When the 

precision and accuracy of occurrence data are not known or are inconsistently 

quantified, implausible locations (e.g., species records outside a reasonable occurrence 



area) should be excluded from the model. Deficient practices include ignoring the 

spatial accuracy of species occurrences and using all available data blindly.   

Text S2.1D. Environmental extent across which response variable is sampled. 

For models to capture the species-environment relationships correctly and completely, 

data should include records across the entire range of environmental conditions suitable 

for the taxon (gold standard). Otherwise, models will be environmentally truncated (40, 

92).  When possible, multiple lines of evidence will be used to ensure that the species 

full environmental tolerances are modelled. Evidence could include environmental 

associations (and related environmental extents) drawn from species’ past distributions 

or locations where species have naturalised outside their native range. This is especially 

important if the model is to be used for projecting outside the modelled area/time or for 

explaining the factors driving the distribution (93, 94). Data regarding past associations 

may be inferred from palaeoclimatic reconstructions or simulations, together with 

evidence of historical or pre-historical occurrence (e.g., fossil records or genetic 

evidence of long-term persistence) (41, 95-98). The data should ideally include the full 

variety of available environments and biotic contexts in which species occurs (99, 100).  

When there is no evidence that the taxon’s full environmental tolerances are included, 

extrapolation of the model to conditions outside the environmental ranges of the 

variables used in model building must be avoided or acknowledged, and its potential 

effects discussed (92). 

Text S2.1E. Geographic extent across which response variable is sampled 

(includes occurrence data and absence, pseudo-absence, or background 

data). 

The extent of the study area can strongly affect modelling results (see also 1C), so the 

region for absence/pseudo-absence/background samples should include but not exceed 

all areas that are accessible to the taxon (101). If the extent is too small, the importance 

of broad-scale range determinants such as climate may be underestimated; if the scale is 

too large, the model may not be able to capture important local nuances and instead 

reflect spurious environmental correlations with dispersal barriers (98, 101). The gold 

standard requires that the geographic extent be defined specifically for the focal taxon 

(e.g., based on dispersal ability and relevant environmental barriers), and including both 

the taxon’s current and historical distribution. When this is not possible, reasonable 



extents can be approximated based on the current range using species-specific 

information and/or predefined biogeographic regions. 

Text S2.2. Guidelines for the predictor variables. 

Summary: Predictor variables are used to assess species-environment relationships (or 

to impose an a priori known relationship in mechanistic models), which, in turn, are 

often projected back to geographic space in order to map potential species distributions 

and biodiversity patterns. The acquisition, preparation and selection of predictor 

variables are thus crucial steps for construction of species distributions models. The 

gold standard requires that the conditions on which the response variable depends be 

captured by the predictor variables selected, at the spatial and temporal resolutions 

chosen, and that the uncertainty around these conditions (i.e., based on measurement 

and/or model errors) be quantifiable in the final model. The description of the 

guidelines for evaluating the predictor (often environmental) data used in biodiversity 

models is synthesised in table S2.2 and discussed below.  

Text S2.2A. Selection of candidate variables. 

A large number of candidate variables are usually available, so those selected for input 

into SDM analyses should ideally be causally related to a species’ distribution. The gold 

standard is to use proximal variables exclusively (36, 48, 102), for which the effect on a 

species’ distribution is well evidenced, so that a model builds on true cause-and-effect 

relationships. Variables should include all relevant proximal predictors (i.e., not being 

restricted to readily available climatic variables). Distal variables that are only 

associated with the species’ distribution by correlation (i.e., indirect variables such as 

elevation or latitude) should not be used for models seeking explanation and projection 

(36, 103). In the absence of knowledge on proximal predictors, the selection of 

variables could be statistically justified using, for example, path analysis (104) or 

variance partitioning (105, 106), testing alternative predictor variable subsets if the exact 

causal set is not known with certainty (50, 51), and excluding spurious relationships that 

can appear under repeated testing (107, 108). Biotic variables (e.g., distributions of 

competitors or prey) should also be included whenever possible (109-111) and when 

there is evidence that interactions are strong (23) and impactful at the scale that is 

relevant for the inferences being made (112). 



Text S2.2B. Spatial and temporal resolution of predictor variables. 

The gold standard for the spatial and temporal resolution of predictor variables is to 

match the spatial resolution at which the response variable is affected by the predictors 

[see 1D]. Choosing an inappropriate spatial resolution can obscure the species–

environment relationship and result in reduced predictive ability (113, 114). In addition, 

temporal resolution should match the biology of the response variable. For example, for 

seasonally migrating species, predictor variables should provide information throughout 

the year, rather than annual averages (115).  Similarly, because the spatial distributions 

of many taxa show delayed responses to changes in predictor variables (116-120), 

analysis of historical time periods may provide better insights (94, 96, 97). Adjusting 

the spatial resolution of predictor variables to an appropriate (theoretically justified) 

resolution by downscaling or interpolation (64) is only acceptable when direct 

measurements are unavailable.  

Text S2.2C. Uncertainty in predictor variables. 

Uncertainty regarding the measurement and/or choice of the predictor variables entering 

the models can obscure the species–environment relationship and result in reduced 

predictive ability (50, 51). Gold-standard practice is to quantify the effects of the 

relevant uncertainties of predictor variables on SDM outputs (see 3D) (57, 121-123). 

Quantifying the effect of uncertainty from the choice of SDMs and climate models 

and/or greenhouse-gas emission scenarios is common when projecting species future 

ranges by means of ensemble modelling (29, 58, 59, 124) and more rarely by applying 

error propagation techniques to generate predictions that reflect predictor variable or 

other uncertainties (see 3D). Similar analysis of uncertainty should be done for other 

variable types (e.g., land use, soil conditions, biotic interactions). When uncertainty in 

predictor variables is not quantified, studies should minimally acknowledge likely 

sources (125) and consider their possible effects in interpretations (126). 

Text S2.3. Guidelines for model building. 

Summary: Model building includes fitting a correlative relationship between biological 

occurrence data and predictor variables. It includes consideration of model complexity 

and procedures to take into account imperfections in response and predictor variables. 

These considerations commonly include the effects of unrepresentative biological 



response data (e.g., due to biased sampling) and, more generally, characterization of 

uncertainty in model outputs resulting from various sources (both in the data and 

inherent to the model building process itself). The description of the guidelines for 

evaluating model building used in biodiversity models is synthetized in table S2.3 and 

discussed below. 

Text S2.3A. Model complexity. 

Complexity can include the number of parameters used in the models, flexibility of the 

modelling approach to fit them, and the number of operations involved (54). Formally, 

it can be quantified with metrics of computational complexity (55), defined by the 

amount of computational resources required to produce an output (127). Although more 

complex models will tend to explain training data better (53, 128), they may over-fit 

and do a poorer job at predicting and projecting (129-131). It has therefore long been 

recognised that any assessment of the effects of model complexity will depend on the 

purpose of the model (132), but the divide between prediction and projection may be 

equally important for biodiversity assessments. The optimal level of complexity 

required can be difficult to assess, especially when projecting to new conditions (in time 

or space) (55, 133). The gold standard is that model complexity and over-fitting are 

assessed in multiple ways, with methods such as penalization or model selection being 

employed when the aim is prediction. Complexity is best assessed by comparing 

inferences to fully independent data sets (see extended discussion in the next section 

1.2.4, 4B) but, as a lesser standard, internal cross-validation can be used (134). 

Text S2.3B. Treatment of bias and noise in response variables. 

Biological response data may be biased or not sufficiently complete (See 1A). The gold 

standard requires either evidence for lack of bias, or that bias is addressed fully by 

methods including an observation model (e.g., an occupancy model) (135), or by 

including covariates that explicitly control for the bias (136). As a gold standard, the 

efficacy of the bias correction can be assessed by comparison with independent data, 

such as from high quality surveys in different regions or times. The silver standard 

approach to bias correction weights the data by their reliability, and assesses the result 

through internal cross-validation. Minimally, likely biases are acknowledged and 

described, along with a discussion of the effects that they may have on interpretations.  



Text S2.3C. Treatment of collinearity. 

Collinearity can cause problems in model fitting: if two variables are strongly co-linear, 

or correlated, it can be impossible to separate their effects. This is problematic when 

predicting to sites or environments in which these correlations change. The estimates of 

the effects of correlated variables can be very unstable, and projection uncertainty can 

increase hugely (103). Reviews (103) document the effects of correlation among 

predictors on the outcome of biodiversity models. Removing correlated variables is 

one solution, but the choice of which variables to remove has to be well informed 

ecologically, ideally via external information regarding likely causal mechanisms (see 

table S2.2, Predictor variables). If collinear variables are retained, the model building 

process (see 3A, model complexity) should aim at stabilising estimates (103). The gold 

standard would be no collinearity among variables. When collinearity cannot be 

removed, a model structure informed by ecology, rather than statistical information 

criteria, would be next-to-ideal. The silver standard is to use methods that are 

insensitive to collinearity or to stabilise the model in the presence of collinearity. 

Text S2.3D. Dealing with modeling and parameter uncertainty. 

It is important to estimate both the amount of uncertainty in the models and the 

parameter values, and to evaluate how these sources of uncertainty affect model outputs 

(e.g., whether uncertainty is particularly high in some parts of the species' range). The 

gold standard is that all relevant sources of uncertainty are assessed and incorporated 

into the analysis. One approach to dealing with uncertainty in parameterising species-

environment relationships is to calculate standard errors and confidence intervals. 

Uncertainty arising from alternative model structures (e.g., multiple SDM approaches) 

can be averaged, in which case the weights given to the models need to be carefully 

considered (57). The gold standard is to fully address the sensitivity to uncertainties in 

models and parameters (e.g., data, model choice, initial conditions in any simulations, 

and parameters). Such process can be achieved by error propagation (58, 123) in which 

uncertainty in all major parts of the models are reflected in the final predictions (57). 

Useful error propagation techniques are bootstrapping the entire analysis (which takes 

into account model uncertainty), Monte-Carlo simulations from parameter distributions 

(in particular for stochastic process models), analytical error propagation (for 

deterministic models), and description of the full likelihood (as in Bayesian model 



estimation). A silver standard would entail addressing at least the most relevant sources 

of uncertainty, e.g., based on literature evidence. 

Text S2.4. Guidelines for model evaluation. 

Summary: Models are expected to approximate ecological reality, and should be 

evaluated against data that are representative of the spatial, temporal, and environmental 

distributions of the response variable. Ideally, such data should be statistically 

independent from that used for model building. The description of the guidelines for 

appraising model evaluation approaches in biodiversity models is synthesised in table 

S2.3 and discussed below. 

Text S2.4A. Evaluation of model assumptions. 

Violation of the theoretical and statistical assumptions of a particular model can lead to 

unreliable results (36, 134, 137, 138) for model interpretation, geographic predictions, 

and projections (37, 49). Demonstrating that no model assumptions were violated is a 

gold standard in modelling. In cases where a researcher tests assumptions and finds 

departures from them, it is necessary to assess the consequences on interpretation of the 

results. If violation of assumptions cannot be avoided, explicit exploration and 

discussion of consequences for the interpretation of results in the particular context in 

which they are being used represents the bronze standard (24, 49). Blindly using models 

without testing assumptions should be considered a deficient practice. 

Text S2.4B. Evaluation of model outputs. 

A key step in evaluating models is to compare their results against statistically 

independent data (134). This generally means using a testing dataset of response and 

predictor variables that are spatially or temporally independent from the training dataset to 

avoid artefactual inflation of performance measures (129, 139, 140). The best currently 

available independent data come from separate geographic areas (130, 140-142), or 

from data collected in different time periods than the ones used to construct the models; 

cases of temporally independent test data for evaluation of model outputs have included 

repeated species inventories over time (27), fossil data to test the ability of models to 

project distributions in different times (96, 97), or ancient genetic data to test for the 

ability of models to project past climatic suitability as a surrogate for abundance (143, 

144). An alternative line of independent evidence is to experimentally evaluate model 



results, for example, using transplant experiments (145). The gold standard is to 

evaluate model results using multiple lines of independent evidence. If fully 

independent data are unavailable, evaluating model projections, or transferability, 

across space can be done by spatially, rather than randomly, sub-setting the data (139, 

146-148). When sub-setting is not possible (e.g., due to small sample sizes), evaluation 

by repeated sub-sampling the training data in spatial blocks may be acceptable, although 

the approach should be used to verify the ability of the model to estimate the training 

data rather than to enable statements about the models’ ability to project to new time 

periods or locations.   

Text S2.4C. Measures of model performance. 

The performance of a model can be assessed from many different perspectives (149-

154). The traditional statistical approach to predictive performance is to quantify how 

close the predictions are to the actual outcome, using goodness-of-fit statistics (e.g., R2 

statistics) (155) and other measures of agreement between predictions and independent 

observations (149, 156). For probability predictions from presence-absence or presence-

only models, performance assessment includes estimating accuracy, bias, calibration, 

discrimination, refinement, resolution, and skill (157), as well as characterising spatial, 

temporal, and environmental patterns in errors (126). Reporting several performance 

measures that reflect different aspects of a model’s performance (gold and silver) (158) 

is superior to reporting only one aspect (bronze). When probabilistic predictions are 

compared to presence-absence or presence-only observations, often only two classes of 

measures are used: calibration and discrimination. Calibration here can be defined as 

“the extent to which a model correctly predicts conditional probability of presence”, and 

includes parametric measures such as calibration plots (153) and the Boyce index (159). 

Discrimination is “the ability to distinguish between occupied and unoccupied sites” 

and includes the non-parametric statistics of sensitivity, specificity, and the area under a 

receiver operating characteristic curve (149). Furthermore, whenever possible, the 

spatial, temporal and environmental pattern of errors and variance should be 

comprehensively characterised (160, 161), as these can change the interpretation of 

model predictions and related conservation decisions (162). 



Text S3. Scoring a representative sample of the literature according to the 

guidelines. 

To select papers for scoring, we started with the literature search described in 

supplementary text S1, but then restricted the journal list to those having a 5-year 

impact factor above 2.5 in the ISI ecology and biodiversity conservation lists (table 

S3.1). The search yielded 5140 papers. We randomly selected a pool of 700 papers from 

the initial list, and then removed all papers that were not appropriate for our analysis 

(e.g., papers that were purely methodological and did not apply models to a biodiversity 

scenario, or papers that mentioned but did not actually construct models). We obtained a 

final set of 400 papers that were scored by six authors (BN, LM, CFD, AMB, CB). The 

results of the scoring of the 400 studies are plotted in fig. S1.5 and discussed in the 

main text.  

 

To provide a measure of the accuracy in the scoring of the papers, 80 of these were 

randomly selected and independently re-evaluated by one of the three different authors 

(AG, BOH, NZ). In the first step, for each paper, we measured the difference between 

the scores recorded in the two evaluations for each criterion. We then took the absolute 

of these measures, as the absolute errors, that ranged between a minimum of 0 (i.e., no 

difference), and a maximum of 3 (i.e., maximum possible differences) (fig. S1.6). The 

errors were then standardised by dividing to 3, thus they ranged between 0 and 1 (fig. 

S.1.7). We then quantified the mean errors for each criterion for each year.  

 

Then to test if, despite variation across the quality of the different modelling studies, 

there were consistent differences of quality over time, we fitted a cumulative logistic 

mixed model to the data. This is an extension of a proportional odds logistic regression. 

So, for classification j in study i, the log odds of being above class k or better is  

 

log(𝑞𝑖𝑗𝑘 (1 − 𝑞𝑖𝑗𝑘))⁄ = 𝛼𝑗𝑘 − 𝛽𝑗𝑡𝑖 + 𝜀𝑖𝑡 

 

log(q_ijk/(1-q_ijk)) = \alpha_jk - \beta_j t_i + \epsilon_it 

 

where 𝛼𝑗𝑘 is the intercept for being in class k or lower for classification j, 𝛽𝑗 is the trend 

in classification over time for year 𝑡𝑖 of study i (and is of primary interest: a positive 



value means that a higher class is more likely), and 𝜀𝑖𝑡 is a random effect for class i at 

time t (note that we have replicate studies in each year). We assume that \epsilon_it ~ 

N(0, \sigma_\epsilon^2) 𝜀𝑖𝑡~𝑁(0, ∑ 𝜀2), and \beta_j ~ N(0, \sigma_\beta^2) 

𝛽𝑗~𝑁(0, ∑𝛽2).  

 

Because the model is the probability of being in class k or lower, there is a constraint 

that \alpha_jk < \alpha_jk+1  𝛼𝑗𝑘 < 𝛼𝑗𝑘+1. Also note that there are k-1 \alpha_i's 𝛼𝑖’s. 

 

We fitted the model with a Bayesian approach. We assumed uniform prior distributions 

between -1000 and 1000 for \alpha_jk 𝛼𝑗𝑘, subject to the ordering constraint. We 

assume uniform distributions between 0 and 1000 for the hyper-parameters, i.e., the 

standard deviations \sigma_\epsilon ∑𝜀 and \sigma_\beta ∑𝛽. The model was fitted 

with OpenBUGS3.2.2, through the BRugs package (163). Three chains were run and 

after a burn-in of 1000 iterations a further 5000 iterations were sampled. 

 

The estimates obtained can be interpreted approximately as the change in probability 

that a modelling study will be in a higher class. So, for example, there is about a 3.4% 

higher probability that a study will be one class higher in model building if it was 

published in 2015 rather than 2014 (Figure 4). More generally, the analysis shows there 

is evidence of improvements in model building and model evaluation over time and, to 

some extent, in the response variables, but not so in the handling of predictor variables.  

Text S4. Glossary 

Glossary 

Absence data - Datasets containing “records” of places where sampling has occurred 

but the taxon has not been documented. Typically used to characterize information on 

the predictor variables found at such sites (and compare this with information for sites 

where the taxon’s presence has been documented). 

Accessible area - The geographic regions that have been accessible to the taxon within 

the time span for which the response-environment variable relationship is to be 

measured, and for which the response and predictor data were collected. For example, 

the area to which a taxon could have occurred within recent generations or since the 



Last Glacial Maximum. An accessible area is one in which the taxon has not been 

prevented from occupying given the taxon’s dispersal ability and the configuration of 

barriers not included as a predictor variable, such as mountain ranges. 

Accuracy - The degree to which data or model prediction/projection match the reality of 

a taxon’s.  

Algorithm - A set of mathematical rules that can be followed to produce an outcome. 

For example, iterative weighted least squares is an algorithm that can be used to find the 

maximum likelihood solution for a GLM. In the literature, the term has sometimes been 

incorrectly confused with the models that are to be fitted. 

Algorithmic settings - The settings of an algorithm (here, for modelling the response–

predictor relationship). The settings (either default, or deviations from them) will 

determine how efficiently the eventual parameters of the model are estimated and, in 

some cases, even the values of those parameters. Note, see difference between 

algorithmic settings and model parameterisations.  

Background data - Data sets for places across the study area (the ‘background’), 

whether or not sampling has occurred, and whether or not the taxon of interest has been 

found. Typically used to characterize predictor variables of such sites (and compare it 

with that for sites where the taxon’s presence has been documented). Contrast with 

Pseudo-absence data. 

Bias (in response data)– The systematic variation in the probability that sites (or types 

of sites) have been sampled. Often, such bias corresponds to accessibility for 

researchers (in geographic space) and often it also leads to sampling bias in 

environmental space.  

Bias (of a statistic or model) - A systematic (i.e., directional) difference between the 

true value of a statistic and the estimate. Contrast with Sampling bias.  

Biotic variables - Data on taxa whose distributions affect the distribution of the focal 

taxon (see Predictor variables and Environmental tolerances). 

Candidate variables - A set of predictor variables from which a subset is selected for 

input into the algorithm (which will yield a model by fitting parameter values for the 

predictor variables).  



Data uncertainty - (see Uncertainty analysis). 

Discrimination - A non-parametric characterization of the ability of a model to correctly 

order (i.e., rank) positive instances higher than negative ones (here suitable vs. 

unsuitable; or present vs. absent).  

Distal variables - Proximal and distal refer to the position of the predictor in the chain 

of processes that link the predictor to its impact on the organism of the focal species. A 

distal variable is only linked to the proximal variable (either causally or even more 

distally via non-causal correlation). 

Ensembles – ensembles of models are obtained by generating multiple simulations 

(copies) across more than one set of initial conditions, model classes, parameters and 

boundary conditions. The different simulations may or may not be combined to produce 

a single composite estimate. When a single composite estimate is obtained it is often 

termed consensus. 

Environmental data - See Predictor variables. 

Environmental tolerances - The environmental requirements (abiotic and biotic) that 

need to be fulfilled for a population to survive. 

Error propagation - Allowing the effects in all parts of a model to flow through to the 

final result. For example, uncertainty in predictors creates more uncertainty (and bias) 

in the estimated effects of these predictors, and thus should affect the uncertainty in the 

ultimate predictions and projections. 

Explanation -  Exploring statistical relationships between response and predictor 

variables, as a means of generating and testing hypotheses regarding a species’ 

relationships with the environment. 

Independent data - Data sets that are statistically independent (e.g., test datasets 

showing no spatiotemporal correlations with the training data used to build the model). 

The concept here applies both to occurrence records and values for environmental 

predictors. Fully independent data seldom exist, but spatially and/or temporally distinct 

data partitions often provide a high degree of independence. Temporally distinct data 

partitions could include observations of range shifts in recent decades. In contrast, 



random splits of a dataset into training and testing data are correlated, and therefore 

non-independent. 

Model - Here, a mathematical description of how the predictor variables affect the 

response variable. Thus, a GLM is one model and a neural networks another. 

Model classes - Types of models as defined by the functions or rules used to fit or 

construct them. Some examples include distance-based envelope methods (BIOCLIM, 

DOMAIN), regression-based approaches (e.g., general linear or additive models), and 

classification trees.  

Model complexity – Most often loosely defined. Term sometimes used to mean the 

effective number of degrees of freedom. It has been equated to dimensionality (the 

number of predictor variables used in a model) and the amount of computational 

resources required to producing a given output (also known as computational 

complexity.  

Model uncertainty - (see Uncertainty analysis). 

Model parameterisations - Statistical models typically have parameters (such as a and b 

in the linear regression model y = a + bx) that are estimated from the data. In contrast, 

variables (e.g., y and x) are the entities that the model aims to represent or predict. A 

model parameterisation is one particular set of parameters. Note, see difference between 

model parameterisations and algorithmic settings (which lead to a model with certain 

parameter values).  

Multiple lines of evidence - Evidence from different types of data, supporting a similar 

posit or inference. Examples include fossil records, spatially distinct areas (such as 

native and naturalised ranges), spatial patterns of genetic diversity, and manipulative 

experiments.  

Noise (in response data) - Random variation, without bias or consistent signal. Contrast 

with Bias.  

Non-analogue – Values of predictor variables that lie beyond the range of those found 

in the dataset used for building model. This can be for one or more predictor variables, 

or for combinations of them. Such conditions typically occur when models are applied 

(projected/transferred) to news regions or time periods.  



Occurrence data (a type of response variable) - Records of a taxon’s presence (and 

sometimes abundance), typically from specimens in natural history museums and 

herbaria and/or from visual and auditory observations. 

Prediction - Quantified statement made by a parameterized model. Predictions to an 

environmental domain within the range of predictor values used for model 

parameterisation is called interpolation. When predictions are made beyond the 

environmental domain of the range of predictor values used to parameterise the model, 

it is called extrapolation. See also: projection 

Predictor variables - Variables that are used in an algorithm to build a model that 

predicts the response variables.  

Projection – Specific type of prediction in which environmental suitability for a taxon 

(its potential geographic distribution) is estimated in a different time period or region 

from the data used to construct the model, often involving extrapolation. Also called 

‘transferring’. 

Proximal variables - Proximal and distal refer to the position of the predictor in the 

chain of processes that link the predictor to its impact on the organism of the focal 

species. A proximal variable determines the organism’s response. Contrast with Distal 

variables. 

Pseudo-absence data - Datasets containing ‘records’ of places where a taxon has not 

been observed, whether or not sampling occurred. Note that the taxon may actually 

inhabit such sites, but not be recorded as present, due to inadequate or non-existent 

sampling. Typically used to characterise environmental information of such sites (and 

compare it with that for sites where the taxon’s presence has been documented). 

Positional error – Also known as geo-referencing error or location error. Error in 

spatial location of data (here, either occurrence data or environmental variables), for 

example due to recording uncertainty, misalignment of datasets, or changing of spatial 

grain.  

Resolution (spatial) - The size of the cells, sometimes called pixels, of the raster grid in 

the study region in geographic space (= grain). 



Response variable - Includes occurrence data, but also geographic records of a taxon’s 

abundance and population-level information (e.g., growth rate).  

Sensitivity analysis - Quantification of the effect of changing model parameters on the 

model output. Aims at identifying most uncertain inputs or relationships. 

Sub-sampling of training data - A partitioning (or splitting) of occurrence data (e.g., 

repeated random splits into training and testing datasets).  

Time error - Error in temporal “location” of data (here, either response or predictor 

variables), for example due to recording uncertainty, misalignment of datasets, or 

changing of temporal grain. 

Theoretically justified - Justified by ecological theory, rather than empirical data 

specific to the taxa involved.  

Training data - The subset of the response variable used to build the model. 

Uncertainty analysis - Quantification of the effect of uncertainty in any step of the 

analysis (data, model structure, parameterization, scenarios, ideally including their 

interaction through error propagation) on the model predictions. 

Unreasonable occurrence records - Those occurrence records considered biologically 

or factually implausible by the researcher (e.g. records far from the documented range 

of the taxon, in the sea for a terrestrial species, or geo-reference that falls into a country 

different from that indicated in the ‘country’ field). 



Supplementary figures 

 

Fig. S1.1. Classification of 400 randomly sampled papers applying SDMs to 

biodiversity assessments according to the number and taxonomic group of species 

modeled. 

 

 

Fig. S1.2. Classification of 400 randomly sampled papers applying SDMs to 

biodiversity assessments according to the continent and ecological realm of focus.  
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Fig. S1.3. Accumulated percentage of papers reviewed falling in different classes as 

the size of the random sample is increased. The different classifications are: (a) the 

purpose of the species distribution model (table S1.2), (b) the intended conservation 

application (table S1.3), (c) the taxonomic group modelled, and the (d) continent or (e) 

ecological realm where the species is present.  

 

 

Fig. S1.4. The continents used to classify papers applying SDMs to biodiversity 

assessments. Map reproduced from image released into the public domain by 

http://www.blatantworld.com/, licensed under Creative Commons License type 

Attribution 2.0 Generic.  

http://www.blatantworld.com/
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MODEL EVALUATION 

 

Fig. S1.5. Frequencies of scores of different categories of issues assessed. 1.A 

sampling response variables; 1.B identification of taxa; 1.C spatial accuracy of response 

variable; 1.D environmental extent across which response variable is sampled; 1.E 

geographical extent across which response variable is sampled; 2.A selection of 

candidate variables; 2.B spatial and temporal resolution of predictor variables; 2.C 

uncertainty in predictor variables; 3.A model complexity; 3.B treatment of bias and 

noise in response variables; 3.C treatment of collinearity; 3.D dealing with modelling 

and parameter uncertainty; 4.A evaluation of model assumptions; 4.B evaluation of 

model outputs; 4.C measures of model performance. 

 

 



 

Fig. S1.6. Differences between scores obtained in the first assessment of the studies 

and the second independent reevaluation by a different assessor. Summary across 

all aspects and criteria judged with 0 in the x-axis representing no change between 

evaluation and independent re-evaluation and 3 representing the greatest possible 

difference. See text S3 for explanation. 
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(B) 

Fig. S1.7. Changes in species distribution modeling standards over time (1995–

2015). (A) Data aggregated for each one of the four critical aspects of data and models 

examined. (B) Data aggregated for each one of the 15 issues and restricted to the studies 

with scores at or above 90%-ile for each 5-years time blocks (equivalent analysis for all 

data, provided in Figure 4). The diagrams show the results of ordinal regression using 

‘Year’ as a continuous variable and the four key aspects of modelling as effects 

(including an interaction). Values near zero on the x-axis represent no change in 

standards over time, positive values indicate improvement, and bars are 95% credible 

intervals.   

 



 

Fig. S1.8. Magnitude of standard deviations (0, no error; 1, maximum error) 

between first and second independent scoring of the studies over annual steps for 

each aspect and issue judged. See text S3 for explanation. 



Supplementary tables 

Table S1.1. Search terms used to select papers for the literature characterization. 

Topic Search terms 

Species 

distribution 

models 

TS=(“species distribut*” OR “habitat distribut*" OR "climat* envelope" OR bioclimat* OR 

"habitat suitab*" OR niche OR "resource selection" OR SDM OR ENM OR BEM OR BCM 

OR HSM OR RSF) AND (model*) 

Biodiversity 

context 

TS=(biolog* OR nature OR species OR habitat OR environment* OR ecosystem OR ecology 

OR wildlife OR biodivers*) 

Time period PY=(1996-2015) 

Journals SO=(ANNU REV ECOL EVOL S OR TRENDS ECOL EVOL OR ECOL LETT OR ECOL 

MONOGR OR FRONT ECOL ENVIRON OR ISME J OR GLOBAL CHANGE BIOL OR 

METHODS ECOL EVOL OR GLOBAL ECOL BIOGEOGR OR CONSERV LETT OR 

MOL ECOL OR J ECOL OR ECOLOGY OR J APPL ECOL OR P ROY SOC B-BIOL SCI 

OR ECOGRAPHY OR ECOL APPL OR DIVERS DISTRIB OR J ANIM ECOL OR FUNCT 

ECOL OR EVOLUTION OR CONSERV BIOL OR J BIOGEOGR OR B AM MUS NAT 

HIST OR WILDLIFE MONOGR OR MOL ECOL RESOUR OR AM NAT OR ADV ECOL 

RES OR BIOL CONSERV OR BIOGEOSCIENCES OR ECOSYSTEMS OR PERSPECT 

PLANT ECOL OR HEREDITY OR ECOL SOC OR AGR ECOSYST ENVIRON OR ECOL 

ECON OR OIKOS OR LANDSCAPE ECOL OR J VEG SCI OR BIOL LETTERS OR 

LANDSCAPE URBAN PLAN OR OECOLOGIA OR J EVOLUTION BIOL OR MICROB 

ECOL OR BEHAV ECOL OR ECOL ENG OR ANIM CONSERV OR MAR ECOL PROG 

SER OR ECOHYDROLOGY OR ENVIRON CONSERV OR PALEOBIOLOGY OR 

ECOTOXICOLOGY OR BEHAV ECOL SOCIOBIOL OR FUNGAL ECOL OR BIOL 

INVASIONS OR ECOL COMPLEX OR J PLANT ECOL OR J CHEM ECOL OR ECOL 

MODEL OR BASIC APPL ECOL OR BIODIVERS CONSERV OR ECOSPHERE OR 

EVOL ECOL OR AQUAT MICROB ECOL ORBIOTROPICA OR APPL VEG SCI OR J 

EXP MAR BIOL ECOL OR ECOL EVOL OR EUR J SOIL BIOL OR RESTOR ECOL OR 

ECOL INFORM OR AM MUS NOVIT OR ORYX OR RANGELAND ECOL MANAG OR J 

ARID ENVIRON OR J WILDLIFE MANAGE OR PEDOBIOLOGIA OR SYST 

BIODIVERS OR THEOR ECOL-NETH OR FRESHW SCI OR POPUL ECOL OR 

WETLANDS OR AQUAT ECOL OR ACTA OECOL OR PLANT ECOL OR POLAR RES 

OR CONSERV GENET OR J SOIL WATER CONSERV OR AUSTRAL ECOL OR J NAT 

CONSERV OR POLAR BIOL OR THEOR POPUL BIOL OR ECOL RES OR WILDLIFE 

RES OR CHEMOECOLOGY OR FLORA OR COMMUNITY ECOL OR EUR J WILDLIFE 

RES OR AVIAN CONSERV ECOL OR NEW ZEAL J ECOL OR ECOSCIENCE OR B 

PEABODY MUS NAT HI OR ENVIRON BIOL FISH OR MAR BIOL RES OR J TROP 

ECOL OR NAT CONSERVACAO OR WILDLIFE BIOL OR TROP CONSERV SCI OR 

POL POLAR RES OR RANGELAND J OR ANN ZOOL FENN OR CHEM ECOL OR 

BIOCHEM SYST ECOL OR TROP ECOL OR EVOL ECOL RES OR PLANT SPEC BIOL 

OR LANDSC ECOL ENG OR S AFR J WILDL RES OR POLAR SCI OR J NAT HIST OR 

CONSERV GENET RESOUR OR J FISH WILDL MANAG OR REV CHIL HIST NAT OR 

NAT AREA J OR AFR J ECOL OR AM MIDL NAT OR P ACAD NAT SCI PHILA OR 

COMPOST SCI UTIL OR AFR J RANGE FOR SCI OR NORTHWEST SCI OR APPL 

ECOL ENV RES OR POLAR REC OR EKOLOJI OR POL J ECOL OR ISR J ECOL EVOL 

OR J FRESHWATER ECOL OR REV MEX BIODIVERS OR CARIBB J SCI OR VIE 

MILIEU OR ECOTROPICA OR NORTHEAST NAT OR WEST N AM NATURALIST OR 

RUSS J ECOL+ OR PACHYDERM OR ECO MONT OR SOUTHEAST NAT OR 

INTERCIENCIA OR REV ECOL-TERRE VIE OR SOUTHWEST NAT OR CONTEMP 

PROBL ECOL+ OR NAT HIST OR ANIM BIODIV CONSERV OR AQUAT INVASIONS 

OR BIOTA NEOTROP OR BMC ECOL OR FIRE ECOL OR J BIOL DYNAM OR 

KOEDOE OR MAR BIODIVERS OR P LINN SOC N S W OR URBAN ECOSYST)  



Table S1.2. Classification of the purpose for which SDMs are used. 

Classes Definition 

Explanation Investigate a species’ (causal) relationship with the environment. 

Prediction Map species’ potential distributions within the same time period and geographic 

region as the data used to construct SDMs. 

Projection Project species distribution predictions into a different time period or location 

from the data used to construct SDMs. Also called ‘transferring’. 

 

Table S1.3. Classification of the conservation applications of SDMs. 

Conservation application 

New species records Spatially identifies areas in which the species is not currently recorded but might 

be found, and which should be surveyed. 

Global change Predicts spatial locations of areas that will change in suitability due to climate or 

land-use change. 

Spatial prioritisation Spatially identifies areas in which conservation would be valuable, or calculates 

a metric of conservation value of specific areas. 

Habitat evaluation Quantifies ability of landscape to support existing populations, or population 

decline in the landscape. Includes population viability analyses. Does not make 

spatially explicit recommendations about habitat management.  

Biological invasions Spatially identifies areas that could be threatened by, facilitate, or prevent 

biological invasions or the transmission of disease. 

Translocation Spatially identifies areas suitable for translocated populations, or calculates 

suitability of specific areas. 

Restoration Spatially identifies areas that would be appropriate for restoration, or measures 

the efficacy of restoring specific areas. 

 



Table S2.1. Guidelines—Response variable. 

Issue Explanation Prediction Projection Standard 

1A. Sampling 
of response 
variables 

Same as prediction or projection, 
depending on whether desired explanation 
is local or global respectively. 

Sampled via systematically designed 
surveys demonstrated to encompass the 
major environmental gradients occupied 
by the taxon, and spatial extent of the 
taxon’s occurrence, within the study area. 
Includes estimates of population 
demographic parameters (to identify self-
sustaining populations), and taxon 
detectability. Information available on 
intensity of sampling at each site, and used 
to ensure sampling is unbiased. 

Sampled via systematically designed 
surveys demonstrated to encompass the 
major environmental gradients occupied 
by the taxon, and spatial extent of the 
taxon’s occurrence. Includes estimates of 
population demographic parameters (to 
identify self-sustaining populations) and 
taxon detectability. Information available 
on intensity of sampling at each site, and 
used to ensure sampling is unbiased. 

Gold 

 
 
 
 
 
 
 
 
 
 

Same as prediction or projection, 
depending on whether desired explanation 
is local or global respectively. 

Sampled via systematically designed 
surveys that encompass the major 
environmental gradients occupied by the 
taxon, and spatial extent of the taxon’s 
occurrence, within the study area. 
Information on intensity of sampling at 
each site used to conduct post-hoc 
resampling/weighting to reduce bias; see 
box 3B. 

Sampled via systematically designed 
surveys that encompass the major 
environmental gradients occupied by the 
taxon, and spatial extent of the taxon’s 
occurrence. Information on intensity of 
sampling at each site used to conduct post-
hoc resampling/weighting to reduce bias; 
see box 3B. 

Silver 

Sampled via non-systematically designed surveys, with information on intensity of sampling at each site used to conduct post-hoc 
resampling/weighting to reduce bias; see box 3B). 
OR 
Sampled via non-systematically designed surveys, without information on intensity of sampling at each site, but post-hoc processing 
undertaken to reduce bias and yield geographically and environmentally representative samples; see box 3B). 

Bronze 

Sampled via non-systematically designed surveys. No post-hoc resampling / weighting / processing to reduce bias or yield 
geographically and environmentally representative samples. 

Deficient 

1B. 
Identification 
of taxa (if 
species 

ID provided by experts, based on multiple lines of evidence, which can be examined. Gold 

ID provided by experts, based on a single line of evidence, which can be examined. Silver 

ID based on heterogeneous sources. Records used without being checked by taxonomic experts but after being critically “cleaned” to Bronze 



Issue Explanation Prediction Projection Standard 

occurrence 
used as 
response 
variable) 

remove unreasonable records. 

ID based on heterogeneous sources. Records used without being checked by taxonomic experts and without being critically “cleaned” 
by others to remove unreasonable records. 

Deficient 



Issue Explanation Prediction Projection Standard 

1C. Spatial 
accuracy of 
response 
variable 

Spatial accuracy of all records sufficiently high relative to spatial resolution of predictor variables such that all points are known to fall 
within the location to which they are assigned. The spatial accuracy matches the spatial resolution of predictor variables as defined in 
section 2B. 

Gold 

Spatial accuracy of all records known and variable across records, so that some points might fall outside the location to which they are 
assigned. These potential locational errors integrated into formal uncertainty analysis (see 3D), and/or steps taken (and documented) 
to remove records with locational errors. 

Silver 

Spatial accuracy not known or inconsistently quantified, but steps taken (and documented) to remove unreasonable records. Bronze 

Spatial accuracy not known or inconsistently quantified, and no steps taken to remove unreasonable records.  Deficient 

1D. 
Environmental 
extent across 
which 
response 
variable is 
sampled 

Same as prediction or projection, 
depending on whether desired explanation 
is local or global respectively. 

Multiple lines of evidence (in addition to 
occurrence data used to train SDMs) 
demonstrate that data cover the range of 
the taxon’s environmental tolerances 
within the study area. 

Multiple lines of evidence (in addition to 
occurrence data used to train SDMs) 
demonstrate that data cover the entire 
range of the taxon’s environmental 
tolerances and that no evolutionary changes 
in species environmental tolerances have 
occurred in the projection space. 

Gold 

Same as prediction or projection, 
depending on whether desired explanation 
is local or global respectively. 

A single line of evidence (in addition to 
occurrence data used to train SDMs) 
demonstrates that data cover the entire 
environmental range of the study region. 

A single line of evidence (in addition to 
occurrence data used to train SDMs) 
demonstrates that data cover the entire 
environmental extent of the known 
distribution of the taxon.  

Silver 

Models fitted with the best available data 
on the known geographical extent of the 
taxon, but without evidence that the 
taxon’s environmental tolerances are 
covered. Steps taken and documented to 
avoid impact of incomplete distribution 
data on results. 

Steps are taken to avoid or flag 
extrapolation to conditions outside the 
environmental extent used to train the 
models. 

Models fitted with the best available data on 
the known geographical extent of the taxon, 
but without evidence that the taxon’s 
environmental tolerances are covered. Steps 
taken to avoid or flag extrapolation to 
conditions outside the extent of each 
predictor variable used to train the models. 

Bronze 

No evidence provided that data cover the 
entire environmental range of the taxon. 

No evidence provided that data cover the 
entire environmental range of the study 
region. 

No evidence provided that data cover the 
entire environmental range of the study 
region. No steps taken to avoid or flag 
extrapolation to conditions outside the 
extent of each predictor used to train the 
models. 

Deficient 



Issue Explanation Prediction Projection Standard 

1E. Geographic 
extent across 
which 
response 
variable is 
sampled 
(includes 
occurrence 
data and 
absence, 
pseudo-
absence, or 
background 
data 

Same as prediction or projection, 
depending on whether desired explanation 
is local or global respectively. 

Samples restricted to and inclusive of all 
regions of the study area that are suitable 
for the taxa to establish populations, and 
that are accessible to the taxon (as 
demonstrated by multiple lines of 
evidence).  

Samples restricted to and inclusive of all 
regions that are suitable for the taxa to 
establish populations and that are accessible 
to the taxon (as demonstrated by multiple 
lines of evidence).  

Gold 

Same as prediction or projection, 
depending on whether desired explanation 
is local or global respectively. 

Samples restricted to and inclusive of all 
regions of the study area that contain the 
full historical and current range of the 
focal taxon. 

Samples restricted to and inclusive of all 
regions that contain the full historical and 
current range of the focal taxon (as 
demonstrated by a single line of evidence). 

Silver 

Same as prediction or projection, 
depending on whether desired explanation 
is local or global respectively. 

Samples derived only from regions 
within the study area reasonably justified 
to contain the full current range of the 
focal taxon. 

Samples derived only from regions 
reasonably justified to contain the full 
current range of the focal taxon. 

Bronze 

No justification of regions from which samples drawn, or samples derive from regions outside those reasonably deemed accessible to 
the taxon. 

Deficient 

 

  



Table S2.2. Guidelines—Predictor variables. 

Issue Explanation Prediction Projection Standard 

2A. Selection 
of candidate 
variables 

Candidates include all proximal variables that multiple lines of evidence (in addition to occurrence data used to train SDMs) that can 
be shown to have a measurable effect on the taxon’s distribution at the spatial scale examined. This must include, whenever relevant, a 
full range of environmental and biotic variables. 

Gold 

Same as prediction or projection, 
depending on whether desired explanation 
is local or global respectively. 

Candidates include proximal and/or distal 
variables that a single line of evidence (in 
addition to occurrence data used to train 
SDMs) shows to have a measurable 
association with the taxon at the spatial 
scale examined. This should include, 
whenever relevant, a range of 
environmental and biotic variables. 

Candidates include proximal variables that 
a single line of evidence (in addition to 
occurrence data used to train SDMs) 
shows to have a measurable effect on the 
taxon’s distribution at the spatial scale 
examined. This should include, whenever 
relevant, a range of environmental and 
biotic variables. 

Silver 

Same as prediction or projection, 
depending on whether desired explanation 
is local or global respectively. 

Candidates include proximal or distal 
variables theoretically justified as having 
an association with the taxon’s distribution 
at the spatial scale examined. 

Candidates include observationally, 
statistically or theoretically justified 
proximal and/or distal variables that have 
a measurable association with the taxon’s 
distribution at the spatial scale examined. 
This should include, whenever possible, a 
range of environmental and biotic 
variables. 

Bronze 

Same as prediction or projection, 
depending on whether desired explanation 
is local or global respectively. 

No ecological justification of variable 
choice. 

No ecological justification of variable 
choice and/or distal variables used 
without strong justification. 

Deficient 

2B. Spatial and 
temporal 
resolution of 
predictor 
variables 

Variables directly measured at the temporal and spatial resolution at which multiple lines of evidence (in addition to occurrence data 
used to train SDMs) demonstrate that the taxon responds. 

Gold 

Variables interpolated at the temporal and spatial resolution at which at least one line of evidence (in addition to occurrence data used 
to train SDMs) demonstrate the taxon responds.  

Silver 

Variables interpolated at a resolution theoretically justified for the taxon. Bronze 

Variables interpolated at a spatial and temporal resolution to which the taxon does not respond and/or without theoretical 
justification of resolution. 

Deficient 



Issue Explanation Prediction Projection Standard 

2C. 
Uncertainty in 
predictor 
variables (both 
under current 
and projected 
conditions) 

All sources of uncertainty in the predictors and their effects on model results quantified, mapped, and interpreted. Gold 

Some of the perceived most important sources of uncertainty in the predictors (e.g. errors in geo-registration, measurement, 
interpolation) quantified and mapped. 

Silver 

Possible sources of uncertainty in the predictors (e.g. errors in geo-registration, measurement, interpolation) and the effects these 
could have on the model acknowledged, and consequences for interpretation of the results discussed. 

Bronze 

No consideration of uncertainty.  Deficient 

  



Table S2.3. Guidelines—Model building. 

Issue Explanation Prediction Projection Standard 

3A. Model 
complexity 

Same as prediction or projection, 
depending on whether desired explanation 
is local or global respectively. 

Same as projection without the necessity 
of using independent data. 

The optimal level of complexity is decided 
by constructing models using an 
appropriate method to deal with model 
complexity, performing  comparison with 
multiple lines of independent data (see 
table 4B). 

Gold 

Same as prediction or projection, 
depending on whether desired explanation 
is local or global respectively. 

Same as projection without the necessity 
of using independent data. 

The optimal level of complexity is decided 
by constructing models using an 
appropriate method to deal with model 
complexity, performing cross-validation or 
comparison with a single line of 
independent data. 

Silver 

Broadly agreed rules of thumb are followed and/or the optimal level of complexity is decided using justified methods without 
independent data. 

Bronze 

Complexity is not considered, or inappropriate methods are used to deal with it. Deficient 

3B. Treatment 
of bias and 
noise in 
response 
variables 

Demonstrated that there are no geographical and environmental biases in response data. 
OR 
Model fully corrected for bias in response data, tested by performing comparison with independent data. 

Gold 

Model corrected for major biases in response data, tested by performing internal cross-validation. Silver 

Bias, and the effects these could have on the model and results, acknowledged and described. Bronze 

No consideration of biases. Deficient 



Issue Explanation Prediction Projection Standard 

3C. Treatment 
of collinearity 

Demonstrated that there is no collinearity in data. 
OR 
Model construction is informed by a full mechanistic understanding of interactions among predictor variables so that the model is 
insensitive to collinearity. 

Gold 

Fitting techniques used are known to be insensitive to collinearity. 
OR 
Demonstrated that the results are robust to changes in collinearity between predictor variables, including non-analogue combinations 
of predictor variables. 

Silver 

Approximate methods are applied to deal with collinearity. 
OR 
Collinearity is acknowledged and described, as are the effects the known collinearity could have on the results. 

Bronze 

Models use collinear variables and a fitting technique sensitive to collinearity without acknowledging the effects on the results, Deficient 

3D. Dealing 
with modelling 
and parameter 
uncertainty 

Uncertainty arising from different modelling techniques, response data, and predictor variables is comprehensively characterized. 
Results are obtained from several SDM techniques that are representative of all appropriate current distribution modelling techniques 
in order to characterize model uncertainty (sometimes called ensemble modelling). Uncertainty is fully propagated through the 
modelling process in order to quantify, map, and interpret uncertainty in results. Biases arising from similarities among structures of 
model classes, and the effects these could have on results are discussed. 

Gold 

Major suspected model and data uncertainties are characterized and: 1) known uncertainties are propagated through the model; or 2) 
the range of predictions built using different scenarios (including parameter and model technique) are quantified and mapped, and 
sensitivity analysis is conducted. Results are obtained from several SDM techniques that are representative of all appropriate current 
distribution modelling techniques in order to characterize model uncertainty. Biases arising from similarities among structures of 
model classes are quantified, accounted for, and discussed. 

Silver 

Results are obtained from multiple SDM techniques but that are not representative of all appropriate current distribution modelling 
techniques. The effect of major suspected model uncertainties on the projections is quantified. Major suspected sources of data 
uncertainties are acknowledged, and their consequences for interpretation of the results are discussed.  

Bronze 

Uncertainty is not dealt with (i.e., a single SDM technique with one set of parameters is used). Deficient 

 

  



Table S2.4. Guidelines—Model evaluation. 

Issue Explanation Prediction Projection Standard 

4A. Evaluation 
of model 
assumptions 

Demonstrated lack of violation of, or robustness to, assumptions relevant for technique being used. Gold 

Theoretically justified lack of violation of, or expected robustness to, assumptions of technique being used. Silver 

Violation of major assumptions of technique being used characterized, and their consequences for interpretation of results discussed. Bronze 

No check for violation of statistical assumptions. Deficient 

4B. Evaluation 
of model 
outputs 

Same as prediction or projection, 
depending on whether desired explanation 
is local or global respectively. 

Evaluated against multiple datasets that 
are statistically independent from the data 
used to train the models, but not 
necessarily from an independent location 
or time period. 

Evaluated against multiple and diverse 
independent evaluation datasets, and/or 
corroboration with experimental testing. 

Gold 

Same as prediction or projection, 
depending on whether desired explanation 
is local or global respectively. 

Evaluated against data obtained by 
geographically structured sub-sampling of 
the training data. 

Evaluated against at least one independent 
evaluation dataset.  

Silver 

Same as prediction or projection, 
depending on whether desired explanation 
is local or global respectively. 

Evaluated with non-independent data. Re-
substitution used to estimate over-fitting.  

N – 1 Jackknife acceptable for very small 
sample sizes. 

Evaluated with non-independent data 
obtained by sub-sampling the training 
data, with repetition.  

N – 1 Jackknife acceptable for very small 
sample sizes. 

Bronze 

No evaluation at all or re-substitution alone. Deficient 



Issue Explanation Prediction Projection Standard 

4C. Measures 
of model 
performance 

Same as prediction. Same as projection, but no 
characterization of temporal errors. 

Measures of performance exhaustively 
summarize goodness of fit and 
discrimination. 
AND 
Patterns of uncertainty comprehensively 
characterized (spatial, temporal and 
environmental; see also 3E). 

Gold 

Measures of performance summarize goodness of fit and calibration  
AND 
Major patterns of uncertainty comprehensively characterized (spatial, temporal and/or environmental; see also 3E) 

Silver 

One or more major aspects of model performance measured and summarized. Bronze 

No, cursory, or inappropriate measures of model performance. Deficient 

 



Table S3.1. Search terms used to select papers using SDMs for biodiversity assessments, for 

the purpose of scoring according to the guidelines. 

Topic Search terms 

Species 

distribution 

models 

TS=(“species distribut*” OR “habitat distribut*" OR "climat* envelope" OR bioclimat* OR 

"habitat suitab*" OR niche OR "resource selection" OR SDM OR ENM OR BEM OR BCM 

OR HSM OR RSF) AND TS=(model*) 

Biodiversity 

context 

TS=(biolog* OR nature OR species OR habitat OR environment* OR ecosystem OR ecology 

OR wildlife OR biodivers*) 

Time period PY=(1996-2015) 

Journals SO=(ANNU REV ECOL EVOL S OR TRENDS ECOL EVOL OR ECOL LETT OR ECOL 

MONOGR OR FRONT ECOL ENVIRON OR ISME J OR GLOBAL CHANGE BIOL OR 

METHODS ECOL EVOL OR GLOBAL ECOL BIOGEOGR OR CONSERV LETT OR 

MOL ECOL OR J ECOL OR ECOLOGY OR J APPL ECOL OR P ROY SOC B-BIOL SCI 

OR ECOGRAPHY OR ECOL APPL OR DIVERS DISTRIB OR J ANIM ECOL OR FUNCT 

ECOL OR EVOLUTION OR CONSERV BIOL OR J BIOGEOGR OR B AM MUS NAT 

HIST OR WILDLIFE MONOGR OR MOL ECOL RESOUR OR AM NAT OR ADV ECOL 

RES OR BIOL CONSERV OR BIOGEOSCIENCES OR ECOSYSTEMS OR PERSPECT 

PLANT ECOL OR HEREDITY OR ECOL SOC OR AGR ECOSYST ENVIRON OR ECOL 

ECON OR OIKOS OR LANDSCAPE ECOL OR J VEG SCI OR BIOL LETTERS OR 

LANDSCAPE URBAN PLAN OR OECOLOGIA OR J EVOLUTION BIOL OR MICROB 

ECOL OR BEHAV ECOL OR ECOL ENG OR ANIM CONSERV OR MAR ECOL PROG 

SER OR ECOHYDROLOGY OR ENVIRON CONSERV OR PALEOBIOLOGY OR 

ECOTOXICOLOGY OR BEHAV ECOL SOCIOBIOL OR FUNGAL ECOL OR BIOL 

INVASIONS OR ECOL COMPLEX OR J PLANT ECOL OR J CHEM ECOL OR ECOL 

MODEL OR BASIC APPL ECOL OR BIODIVERS CONSERV OR ECOSPHERE OR 

EVOL ECOL OR AQUAT MICROB ECOL) 
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